--- title: "**Forecast Combination**" author: "Nickalus Redell" date: "`r lubridate::today()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Forecast Combination} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set(fig.width = 7.15, fig.height = 4) knitr::opts_knit$set(fig.width = 7.15, fig.height = 4) ``` # **Purpose** The purpose of this vignette is to illustrate the various approaches in `forecsatML` for producing final forecasts that are (a) a combination of short- and long-term forecasts as well as (b) a combination of many ML models at select forecast horizons. The goal of `forecastML::combine_forecasts()` is to provide maximum flexibility when producing a single forecast that is expected to perform as well in the near-term as it is in the long-term. # **Forecast Combination by Horizon** * Forecast combinations with `forecastML::combine_forecasts(..., type = "horizon")` are a simple and effective method for producing final forecasts that consist of (a) an ensemble of short- and long-term forecasts and (b) an ensemble of separately trained ML models at any forecast horizon. * Below are 3 examples: + 1: An ensemble of short- and long-term forecasts + 2: An ensemble of short- and long-term forecasts with separately trained ML models + 3: An ensemble of short- and long-term forecasts with a cross-sectional ensemble of models at select horizons ## **Load Packages & Data** ```{r, warning = FALSE, message = FALSE} library(forecastML) library(dplyr) library(ggplot2) library(glmnet) data("data_seatbelts", package = "forecastML") data <- data_seatbelts ``` ## **1: One Model Training Function** * **Setup:** + 1 model training function (could consist of an ensemble of models). + Multiple direct forecast horizons.

* **Combination:** + Greedy: Models with shorter direct forecast horizons produce near-term forecasts, and models with longer direct forecast horizons only produce forecasts at horizons above and beyond those from the short-term models.

* **Pros:** + Easy to implement.

* **Cons:** + If the model training function uses 1 ML algorithm--e.g., a neural network--to build both short- and long-term direct forecast models--which will have different parameters/hyperparameters--, it could be the case that entirely different model classes--e.g., support vector machines--may produce better short- or long-term final forecasts if included in the forecast combination.

![](forecast_combination_1.png){width=715px, height=400px}
* **Example:** ```{r} horizons <- c(1, 3, 6, 9, 12) data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) windows <- forecastML::create_windows(data_train, window_length = 0) model_fun <- function(data) { x <- as.matrix(data[, -1, drop = FALSE]) y <- as.matrix(data[, 1, drop = FALSE]) set.seed(1) model <- glmnet::cv.glmnet(x, y, nfolds = 5) } model_results <- forecastML::train_model(data_train, windows, model_name = "LASSO", model_function = model_fun) prediction_fun <- function(model, data_features) { data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)), "y_pred_lower" = predict(model, as.matrix(data_features)) - 30, "y_pred_upper" = predict(model, as.matrix(data_features)) + 30) } data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) data_forecasts <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast) data_forecasts <- forecastML::combine_forecasts(data_forecasts, type = "horizon") plot(data_forecasts, data_actual = data_seatbelts[-(1:170), ], actual_indices = (1:nrow(data_seatbelts))[-(1:170)]) ``` *** ## **2: Multiple Model Training Functions** * **Setup:** + 2 or more model training functions. + Multiple direct forecast horizons.

* **Combination:** + Greedy: Models with shorter direct forecast horizons produce near-term forecasts, and models with longer direct forecast horizons only produce forecasts at horizons above and beyond those from the short-term models. + If multiple model training functions produce models with the same direct forecast horizon, forecasts for the shared horizon(s) are combined with the function passed in `combine_forecasts(..., agregate = function)` (see example 3 below).

* **Pros:** + Gives precise control over the algorithms used to produce short- and long-term forecasts. For example, a large neural network may produce the best short-term forecasts while a linear model may produce the best long-term forecasts. + Also useful with large data when training multiple direct forecast models with one call to `forecastML::train_model()` uses too much memory. Here, you would train one model at a time and combine them with `forecastML::combine_forecasts()`.

* **Cons:** + More code.

![](forecast_combination_2.png){width=715px, height=400px}
* **Example:** ```{r} # LASSO horizons <- c(1, 3, 6) data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) windows <- forecastML::create_windows(data_train, window_length = 0) model_fun_lasso <- function(data) { x <- as.matrix(data[, -1, drop = FALSE]) y <- as.matrix(data[, 1, drop = FALSE]) set.seed(1) model <- glmnet::cv.glmnet(x, y, alpha = 1, nfolds = 5) } model_results <- forecastML::train_model(data_train, windows, model_name = "LASSO", model_function = model_fun_lasso) prediction_fun <- function(model, data_features) { data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)), "y_pred_lower" = predict(model, as.matrix(data_features)) - 30, "y_pred_upper" = predict(model, as.matrix(data_features)) + 30) } data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) data_forecasts_lasso <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast) #------------------------------------------------------------------------------ # Ridge horizons <- c(9, 12) data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) windows <- forecastML::create_windows(data_train, window_length = 0) model_fun_ridge <- function(data) { x <- as.matrix(data[, -1, drop = FALSE]) y <- as.matrix(data[, 1, drop = FALSE]) set.seed(1) model <- glmnet::cv.glmnet(x, y, alpha = 0, nfolds = 5) } model_results <- forecastML::train_model(data_train, windows, model_name = "Ridge", model_function = model_fun_ridge) prediction_fun <- function(model, data_features) { data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)), "y_pred_lower" = predict(model, as.matrix(data_features)) - 30, "y_pred_upper" = predict(model, as.matrix(data_features)) + 30) } data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) data_forecasts_ridge <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast) #------------------------------------------------------------------------------ # Forecast combination. data_forecasts <- forecastML::combine_forecasts(data_forecasts_lasso, data_forecasts_ridge, type = "horizon") plot(data_forecasts, data_actual = data_seatbelts[-(1:170), ], actual_indices = (1:nrow(data_seatbelts))[-(1:170)]) ``` *** ## **3: Multiple Model Training Functions - Aggregation** * **Setup:** + 2 or more model training functions. + The model training functions share the same direct forecast horizons (complete overlap is not necessary). + Multiple direct forecast horizons.

* **Combination:** + If multiple model training functions produce models with the same direct forecast horizon, forecasts for the shared horizon(s) are combined with the function passed in `combine_forecasts(..., agregate = function)`. + The default combination for shared horizons is `median()`. + Greedy: Models with shorter direct forecast horizons produce near-term forecasts, and models with longer direct forecast horizons only produce forecasts at horizons above and beyond those from the short-term models.

* **Pros:** + A simple way to produce ensemble forecasts at a given forecast horizon.

* **Cons:** + More code.

![](forecast_combination_3.png){width=715px, height=400px}
* **Example:** ```{r} # LASSO horizons <- c(1, 3, 6, 9, 12) data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) windows <- forecastML::create_windows(data_train, window_length = 0) model_fun_lasso <- function(data) { x <- as.matrix(data[, -1, drop = FALSE]) y <- as.matrix(data[, 1, drop = FALSE]) set.seed(1) model <- glmnet::cv.glmnet(x, y, alpha = 1, nfolds = 5) } model_results <- forecastML::train_model(data_train, windows, model_name = "LASSO", model_function = model_fun_lasso) prediction_fun <- function(model, data_features) { data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)), "y_pred_lower" = predict(model, as.matrix(data_features)) - 30, "y_pred_upper" = predict(model, as.matrix(data_features)) + 30) } data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) data_forecasts_lasso <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast) #------------------------------------------------------------------------------ # Ridge horizons <- c(1, 3, 6, 9, 12) data_train <- forecastML::create_lagged_df(data_seatbelts, type = "train", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) windows <- forecastML::create_windows(data_train, window_length = 0) model_fun_ridge <- function(data) { x <- as.matrix(data[, -1, drop = FALSE]) y <- as.matrix(data[, 1, drop = FALSE]) set.seed(1) model <- glmnet::cv.glmnet(x, y, alpha = 0, nfolds = 5) } model_results <- forecastML::train_model(data_train, windows, model_name = "Ridge", model_function = model_fun_ridge) prediction_fun <- function(model, data_features) { data_pred <- data.frame("y_pred" = predict(model, as.matrix(data_features)), "y_pred_lower" = predict(model, as.matrix(data_features)) - 30, "y_pred_upper" = predict(model, as.matrix(data_features)) + 30) } data_forecast <- forecastML::create_lagged_df(data_seatbelts, type = "forecast", method = "direct", outcome_col = 1, lookback = 1:15, horizon = horizons) data_forecasts_ridge <- predict(model_results, prediction_function = list(prediction_fun), data = data_forecast) #------------------------------------------------------------------------------ # Forecast combination. data_forecasts <- forecastML::combine_forecasts(data_forecasts_lasso, data_forecasts_ridge, type = "horizon", aggregate = stats::median) plot(data_forecasts, data_actual = data_seatbelts[-(1:170), ], actual_indices = (1:nrow(data_seatbelts))[-(1:170)]) ``` ***