
Package: forecastML (via r-universe)
August 27, 2024

Type Package

Title Time Series Forecasting with Machine Learning Methods

Version 0.9.1

Author Nickalus Redell

Maintainer Nickalus Redell <nickalusredell@gmail.com>

Description The purpose of 'forecastML' is to simplify the process of
multi-step-ahead forecasting with standard machine learning
algorithms. 'forecastML' supports lagged, dynamic, static, and
grouping features for modeling single and grouped numeric or
factor/sequence time series. In addition, simple wrapper
functions are used to support model-building with most R
packages. This approach to forecasting is inspired by Bergmeir,
Hyndman, and Koo's (2018) paper ``A note on the validity of
cross-validation for evaluating autoregressive time series
prediction'' <doi:10.1016/j.csda.2017.11.003>.

License MIT + file LICENSE

URL https://github.com/nredell/forecastML/

Encoding UTF-8

LazyData true

Imports tidyr (>= 0.8.1), rlang (>= 0.4.0), magrittr (>= 1.5),
lubridate (>= 1.7.4), ggplot2 (>= 3.1.0), future.apply (>=
1.3.0), methods, purrr (>= 0.3.2), data.table (>= 1.12.6),
dtplyr (>= 1.0.0), tibble (>= 2.1.3)

RoxygenNote 7.1.0

Collate 'fill_gaps.R' 'create_windows.R' 'create_skeleton.R'
'combine_forecasts.R' 'lagged_df.R' 'return_error.R'
'return_hyper.R' 'train_model.R' 'reconcile_forecasts.R'
'calculate_intervals.R' 'data_seatbelts.R' 'data_buoy.R'
'data_buoy_gaps.R' 'zzz.R'

Depends R (>= 3.5.0), dplyr (>= 0.8.3)

1

https://doi.org/10.1016/j.csda.2017.11.003
https://github.com/nredell/forecastML/

2 calculate_intervals

Suggests glmnet (>= 2.0.16), DT (>= 0.5), knitr (>= 1.22), rmarkdown
(>= 1.12.6), xgboost (>= 0.82.1), randomForest (>= 4.6.14),
testthat (>= 2.2.1), covr (>= 3.3.1), reticulate (>= 1.15)

VignetteBuilder knitr

Repository https://nredell.r-universe.dev

RemoteUrl https://github.com/nredell/forecastml

RemoteRef HEAD

RemoteSha 282ebe0b7ee62375cf1e71a1fb002be0e57a0a9c

Contents
calculate_intervals . 2
combine_forecasts . 4
create_lagged_df . 7
create_skeleton . 11
create_windows . 11
data_buoy . 13
data_buoy_gaps . 14
data_seatbelts . 14
fill_gaps . 15
plot.forecastML . 16
plot.forecast_error . 18
plot.forecast_model_hyper . 19
plot.forecast_results . 21
plot.lagged_df . 22
plot.training_results . 23
plot.validation_error . 24
plot.windows . 25
predict.forecast_model . 26
reconcile_forecasts . 29
residuals . 33
return_error . 33
return_hyper . 36
summary.lagged_df . 38
train_model . 38

Index 41

calculate_intervals Calculate bootstrap prediction intervals for forecasts

Description

The residuals from model training/fit are sampled i.i.d. for (a) each direct forecast horizon for a
single time series and (b) each combination of direct forecast horizon and group for multiple time
series.

calculate_intervals 3

Usage

calculate_intervals(
forecasts,
residuals,
index = NULL,
outcome = NULL,
keys = NULL,
levels = c(0.95),
times = 100L,
weights = NULL,
keep_samples = FALSE

)

Arguments

forecasts A data.frame of forecasts.

residuals A data.frame of residuals (e.g., residuals(data_fit))

index Optional for forecasts from combine_forecasts(). A string giving the name
of the date column in forecasts.

outcome Optional for forecasts from combine_forecasts(). A string giving the name
of the forecast column in forecasts.

keys Optional. For grouped time series, a character vector giving the column name(s)
of the group columns. The key identifies unique time series of residuals for
bootstrap sampling. For direct forecasting, a single time series will have one
group per direct forecast horizon.

levels A numeric vector with 1 or more forecast prediction intervals. A level of .95,
for example, will return the 0.25 and .975 quantiles of the bootstrapped forecast
distribution at each forecast horizon.

times Integer. The number of bootstrap samples.

weights Not implemented.

keep_samples Boolean. If TRUE, a data.frame of times bootstrapped forecasts is returned in
addition to the calculated forecast prediction intervals. The samples are in the
list slot named ’samples’.

Value

If forecasts is an object of class ’forecast_results’, a forecast_results object with a new col-
umn for each lower- and upper-bound forecast in levels. If forecasts is a data.frame, the function
return will be the same but without forecastML attributes. If, keep_samples is TRUE, a named list
of length 2 is returned with ’forecasts’ and ’samples’.

Examples

Not run:
data("data_seatbelts", package = "forecastML")

4 combine_forecasts

data_train <- create_lagged_df(data_seatbelts, type = "train", method = "direct",
outcome_col = 1, lookback = 1:15,
horizons = c(1, 6, 12))

windows <- create_windows(data_train, window_length = 0)

model_fn <- function(data) {
model <- lm(DriversKilled ~ ., data)

}

model_results <- train_model(data_train, windows, model_name = "OLS",
model_function = model_fn)

predict_fn <- function(model, data) {
data_pred <- as.data.frame(predict(model, data))

}

data_fit <- predict(model_results, prediction_function = list(predict_fn), data = data_train)

residuals <- residuals(data_fit)

data_forecast <- create_lagged_df(data_seatbelts, type = "forecast",
method = "direct", outcome_col = 1,
lookback = 1:15, horizons = c(1, 6, 12))

data_forecasts <- predict(model_results, prediction_function = list(predict_fn),
data = data_forecast)

data_forecasts <- combine_forecasts(data_forecasts)

data_forecasts <- calculate_intervals(data_forecasts, residuals, times = 30)

plot(data_forecasts)

End(Not run)

combine_forecasts Combine multiple horizon-specific forecast models to produce one
forecast

Description

The horizon-specific models can either be combined to (a) produce final forecasts for only those
horizons at which they were trained (i.e., shorter-horizon models override longer-horizon models
when producing final short-horizon h-step-ahead forecasts) or (b) produce final forecasts using any
combination of horizon-specific models that minimized error over the validation/training dataset.

Usage

combine_forecasts(

combine_forecasts 5

...,
type = c("horizon", "error"),
aggregate = stats::median,
data_error = list(NULL),
metric = NULL

)

Arguments

... One or more objects of class ’forecast_results’ from running predict.forecast_model()
on an input forward-looking forecast dataset. These are the forecasts from the
horizon-specific direct forecasting models trained over the entire training dataset
by setting create_windows(..., window_length = 0). If multiple models are
passed in ... with the same direct forecast horizon, for type = 'horizon', fore-
casts for the same direct forecast horizon are combined with aggregate; for
type = 'error', the model that minimizes the error metric at the given direct
forecast horizon produces the forecast.

type Default: ’horizon’. A character vector of length 1 that identifies the forecast
combination method.

aggregate Default median for type = 'horizon'. A function–without parentheses–that
aggregates forecasts if more than one model passed in ... has the same direct
forecast horizon and type = 'horizon'].

data_error Optional. A list of objects of class ’validation_error’ from running return_error()
on a training dataset. The length and order of data_error should match the
models passed in

metric Required if data_error is given. A length 1 character vector naming the fore-
cast error metric used to select the optimal model at each forecast horizon from
the models passed in ’...’ e.g., ’mae’.

Value

An S3 object of class ’forecastML’ with final h-step-ahead forecasts.

Forecast combination type:

• type = 'horizon': 1 final h-step-ahead forecast is returned for each model object passed in
....

• type = 'error': 1 final h-step-ahead forecast is returned by selecting, for each forecast hori-
zon, the model that minimized the chosen error metric at that horizon on the outer-loop vali-
dation data sets.

Columns in returned ’forecastML’ data.frame:

• model: User-supplied model name in train_model().

• model_forecast_horizon: The direct-forecasting time horizon that the model was trained
on.

• horizon: Forecast horizons, 1:h, measured in dataset rows.

6 combine_forecasts

• forecast_period: The forecast period in row indices or dates. The forecast period starts at
either attributes(create_lagged_df())$data_stop + 1 for row indices or attributes(create_lagged_df())$data_stop
+ 1 * frequency for date indices.

• "groups": If given, the user-supplied groups in create_lagged_df().
• "outcome_name"_pred: The final forecasts.
• "outcome_name"_pred_lower: If given, the lower forecast bounds returned by the user-

supplied prediction function.
• "outcome_name"_pred_upper: If given, the upper forecast bounds returned by the user-

supplied prediction function.

Methods and related functions

The output of combine_forecasts() has the following generic S3 methods

• plot

Examples

Example with "type = 'horizon'".
data("data_seatbelts", package = "forecastML")

horizons <- c(1, 3, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

windows <- create_windows(data_train, window_length = 0)

model_function <- function(data, my_outcome_col) {
model <- lm(DriversKilled ~ ., data = data)
return(model)

}

model_results <- train_model(data_train, windows, model_name = "LM", model_function)

data_forecast <- create_lagged_df(data_seatbelts, type = "forecast", outcome_col = 1,
lookback = lookback, horizon = horizons)

prediction_function <- function(model, data_features) {
x <- data_features
data_pred <- data.frame("y_pred" = predict(model, newdata = x))
return(data_pred)

}

data_forecasts <- predict(model_results, prediction_function = list(prediction_function),
data = data_forecast)

data_combined <- combine_forecasts(data_forecasts)

plot(data_combined)

create_lagged_df 7

create_lagged_df Create model training and forecasting datasets with lagged, grouped,
dynamic, and static features

Description

Create a list of datasets with lagged, grouped, dynamic, and static features to (a) train forecasting
models for specified forecast horizons and (b) forecast into the future with a trained ML model.

Usage

create_lagged_df(
data,
type = c("train", "forecast"),
method = c("direct", "multi_output"),
outcome_col = 1,
horizons,
lookback = NULL,
lookback_control = NULL,
dates = NULL,
frequency = NULL,
dynamic_features = NULL,
groups = NULL,
static_features = NULL,
predict_future = NULL,
use_future = FALSE,
keep_rows = FALSE

)

Arguments

data A data.frame with the (a) target to be forecasted and (b) features/predictors.
An optional date column can be given in the dates argument (required for
grouped time series). Note that ‘orecastML only works with regularly spaced
date/time intervals and that missing rows–usually due to periods when no data
was collected–will result in incorrect feature lags. Use fill_gaps to fill in any
missing rows/data prior to running this function.

type The type of dataset to return–(a) model training or (b) forecast prediction. The
default is train.

method The type of modeling dataset to create. direct returns 1 data.frame for each
forecast horizon and multi_output returns 1 data.frame for simultaneously
modeling all forecast horizons. The default is direct.

outcome_col The column index–an integer–of the target to be forecasted. If outcome_col !=
1, the outcome column will be moved to position 1 and outcome_col will be set
to 1 internally.

8 create_lagged_df

horizons A numeric vector of one or more forecast horizons, h, measured in dataset rows.
If dates are given, a horizon of 1, for example, would equal 1 * frequency in
calendar time.

lookback A numeric vector giving the lags–in dataset rows–for creating the lagged fea-
tures. All non-grouping, non-static, and non-dynamic features in the input dataset,
data, are lagged by the same values. The outcome is also lagged by default. Ei-
ther lookback or lookback_control need to be specified–but not both.

lookback_control

A list of numeric vectors, specifying potentially unique lags for each feature.
The length of the list should equal ncol(data) and be ordered the same as
the columns in data. Lag values for any grouping, static, or dynamic feature
columns are automatically coerced to 0 and not lagged. list(NULL) lookback_control
values drop columns from the input dataset. Either lookback or lookback_control
need to be specified–but not both.

dates A vector or 1-column data.frame of dates/times with class ’Date’ or ’POSIXt’.
The length of dates should equal nrow(data). Required if groups are given.

frequency Date/time frequency. Required if dates are given. A string taking the same in-
put as base::seq.Date(..., by = "frequency") or base::seq.POSIXt(...,
by = "frequency") e.g., ’1 hour’, ’1 month’, ’7 days’, ’10 years’ etc. The high-
est frequency supported at present is ’1 sec’.

dynamic_features

A character vector of column names that identify features that change through
time but which are not lagged (e.g., weekday or year). If type = "forecast"
and method = "direct", these features will receive NA values; though, they can
be filled in by the user after running this function.

groups A character vector of column names that identify the groups/hierarchies when
multiple time series are present. These columns are used as model features but
are not lagged. Note that combining feature lags with grouped time series will
result in NA values throughout the data.

static_features

For grouped time series only. A character vector of column names that identify
features that do not change through time. These columns are not lagged. If type
= "forecast", these features will be filled forward using the most recent value
for the group.

predict_future When type = "forecast", a function for predicting the future values of any dy-
namic features. This function takes data and dates as positional arguments and
returns a data.frame with (a) one or more rows, (b) an "index" column of future
dates, (c) group columns if needed, and (d) 1 or more columns with name(s) in
dynamic_features.

use_future Boolean. If TRUE, the future.apply package is used for creating lagged data.frames.
multisession or multicore futures are especially useful for (a) grouped time
series with many groups and (b) high-dimensional datasets with many lags per
feature. Run future::plan(future::multiprocess) prior to this function to
set up multissession or multicore parallel dataset creation.

keep_rows Boolean. For non-grouped time series, keep the 1:max(lookback) rows at the
beginning of the time series. These rows will contain missing values for lagged
features that "look back" before the start of the dataset.

create_lagged_df 9

Value

An S3 object of class ’lagged_df’ or ’grouped_lagged_df’: A list of data.frames with new columns
for the lagged/non-lagged features. For method = "direct", the length of the returned list is equal
to the number of forecast horizons and is in the order of horizons supplied to the horizons argu-
ment. Horizon-specific datasets can be accessed with my_lagged_df$horizon_h where ’h’ gives
the forecast horizon. For method = "multi_output", the length of the returned list is 1. Horizon-
specific datasets can be accessed with my_lagged_df$horizon_1_3_5 where "1_3_5" represents
the forecast horizons passed in horizons.

The contents of the returned data.frames are as follows:

type = ’train’, non-grouped: A data.frame with the outcome and lagged/dynamic features.

type = ’train’, grouped: A data.frame with the outcome and unlagged grouping columns followed
by lagged, dynamic, and static features.

type = ’forecast’, non-grouped: (1) An ’index’ column giving the row index or date of the forecast
periods (e.g., a 100 row non-date-based training dataset would start with an index of 101). (2)
A ’horizon’ column that indicates the forecast period from 1:max(horizons). (3) Lagged
features identical to the ’train’, non-grouped dataset.

type = ’forecast’, grouped: (1) An ’index’ column giving the date of the forecast periods. The first
forecast date for each group is the maximum date from the dates argument + 1 * frequency
which is the user-supplied date/time frequency.(2) A ’horizon’ column that indicates the fore-
cast period from 1:max(horizons). (3) Lagged, static, and dynamic features identical to the
’train’, grouped dataset.

Attributes

• names: The horizon-specific datasets that can be accessed with my_lagged_df$horizon_h.

• type: Training, train, or forecasting, forecast, dataset(s).

• method: direct or multi_output.

• horizons: Forecast horizons measured in dataset rows.

• outcome_col: The column index of the target being forecasted.

• outcome_cols: If method = multi_output, the column indices of the multiple outputs in the
transformed dataset.

• outcome_name: The name of the target being forecasted.

• outcome_names: If method = multi_output, the column names of the multiple outputs in
the transformed dataset. The names take the form "outcome_name_h" where ’h’ is a horizon
passed in horizons.

• predictor_names: The predictor or feature names from the input dataset.

• row_indices: The row.names() of the output dataset. For non-grouped datasets, the first
lookback + 1 rows are removed from the beginning of the dataset to remove NA values in the
lagged features.

• date_indices: If dates are given, the vector of dates.

• frequency: If dates are given, the date/time frequency.

• data_start: min(row_indices) or min(date_indices).

10 create_lagged_df

• data_stop: max(row_indices) or max(date_indices).

• groups: If groups are given, a vector of group names.

• class: grouped_lagged_df, lagged_df, list

Methods and related functions

The output of create_lagged_df() is passed into

• create_windows

and has the following generic S3 methods

• summary

• plot

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")
#--
Example 1 - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15

data <- data_seatbelts

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
horizons = horizons, lookback = lookback)

head(data_train[[length(horizons)]])

Example 1 - Forecasting dataset
The last 'nrow(data_seatbelts) - horizon' rows are automatically used from data_seatbelts.
data_forecast <- create_lagged_df(data_seatbelts, type = "forecast", outcome_col = 1,

horizons = horizons, lookback = lookback)
head(data_forecast[[length(horizons)]])

#--
Example 2 - Training data for one 3-month horizon model w/ unique lags per predictor.
horizons <- 3
lookback <- list(c(3, 6, 9, 12), c(4:12), c(6:15), c(8))

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
horizons = horizons, lookback_control = lookback)

head(data_train[[length(horizons)]])

create_skeleton 11

create_skeleton Remove the features from a lagged training dataset to reduce memory
consumption

Description

create_skeleton() strips the feature data from a create_lagged_df() object but keeps the out-
come column(s), any grouping columns, and meta-data which allows the resulting lagged_df to be
used downstream in the forecastML pipeline. The main benefit is that the custom modeling func-
tion passed in train_model() can read data directly from the disk or a database when the dataset
is too large to fit into memory.

Usage

create_skeleton(lagged_df)

Arguments

lagged_df An object of class ’lagged_df’ from create_lagged_df(..., type = 'train').

Value

An S3 object of class ’lagged_df’ or ’grouped_lagged_df’: A list of data.frames with the out-
come column(s) and any grouping columns but with all other features removed. A special attribute
skeleton = TRUE is added.

Methods and related functions

The output of create_skeleton can be passed into

• create_windows

create_windows Create time-contiguous validation datasets for model evaluation

Description

Flexibly create blocks of time-contiguous validation datasets to assess the forecast accuracy of
trained models at various times in the past. These validation datasets are similar to the outer loop
of a nested cross-validation model training setup.

12 create_windows

Usage

create_windows(
lagged_df,
window_length = 12L,
window_start = NULL,
window_stop = NULL,
skip = 0,
include_partial_window = TRUE

)

Arguments

lagged_df An object of class ’lagged_df’ or ’grouped_lagged_df’ from create_lagged_df.

window_length An integer that defines the length of the contiguous validation dataset in dataset
rows/dates. If dates were given in create_lagged_df(), the validation window
is ’window_length’ * ’date frequency’ in calendar time. Setting window_length
= 0 trains the model on (a) the entire dataset or (b) between a single window_start
and window_stop value. Specifying multiple window_start and window_stop
values with vectors of length > 1 overrides window_length.

window_start Optional. A row index or date identifying the row/date to start creating contigu-
ous validation datasets. A vector of start rows/dates can be supplied for greater
control. The length and order of window_start should match window_stop. If
length(window_start) > 1, window_length, skip, and include_partial_window
are ignored.

window_stop Optional. An index or date identifying the row/date to stop creating contigu-
ous validation datasets. A vector of start rows/dates can be supplied for greater
control. The length and order of window_stop should match window_start. If
length(window_stop) > 1, window_length, skip, and include_partial_window
are ignored.

skip An integer giving a fixed number of dataset rows/dates to skip between valida-
tion datasets. If dates were given in create_lagged_df(), the time between
validation windows is skip * ’date frequency’.

include_partial_window

Boolean. If TRUE, keep validation datasets that are shorter than window_length.

Value

An S3 object of class ’windows’: A data.frame giving the indices for the validation datasets.

Methods and related functions

The output of create_windows() is passed into

• train_model

and has the following generic S3 methods

• plot

data_buoy 13

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")

Example - Training data for 2 horizon-specific models w/ common lags per feature.
horizons <- c(1, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

All historical window lengths of 12 plus any partial windows at the end of the dataset.
windows <- create_windows(data_train, window_length = 12)
windows

Two custom validation windows with different lengths.
windows <- create_windows(data_train, window_start = c(20, 80), window_stop = c(30, 100))
windows

data_buoy NOAA buoy weather data

Description

A dataset containing daily average sensor measurements of several environmental conditions col-
lected by 14 buoys in Lake Michigan from 2012 through 2018.

Usage

data_buoy

Format

A data.frame with 30,821 rows and 9 columns:

date date
wind_spd average daily wind speed in kts
buoy_id the station ID for each buoy
lat latitude
lon longitude
day day of year
year calendar year
air_temperature air temperature in degrees Fahrenheit
sea_surface_temperature water temperature in degrees Fahrenheit

Source

http://www.ndbc.noaa.gov/

http://www.ndbc.noaa.gov/

14 data_seatbelts

data_buoy_gaps NOAA buoy weather data

Description

A dataset containing daily average sensor measurements of several environmental conditions col-
lected by 14 buoys in Lake Michigan from 2012 through 2018. This dataset is identical to the
data_buoy dataset except that there are gaps in the daily sensor data. Running fill_gaps() on
data_buoy_gaps will produce data_buoy.

Usage

data_buoy_gaps

Format

A data.frame with 23,646 rows and 9 columns:

date date

wind_spd average daily wind speed in kts

buoy_id the station ID for each buoy

lat latitude

lon longitude

day day of year

year calendar year

air_temperature air temperature in degrees Fahrenheit

sea_surface_temperature water temperature in degrees Fahrenheit

Source

http://www.ndbc.noaa.gov/

data_seatbelts Road Casualties in Great Britain 1969-84

Description

This is the Seatbelts dataset from the datasets package.

Usage

data_seatbelts

http://www.ndbc.noaa.gov/

fill_gaps 15

Format

A data.frame with 192 rows and 8 columns

Source

Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press, pp. 519–523.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford
University Press.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/UKDriverDeaths.html

fill_gaps Prepare a dataset for modeling by filling in temporal gaps in data
collection

Description

In order to create a modeling dataset with feature lags that are temporally correct, the entry function
in forecastML, create_lagged_df, needs evenly-spaced time series with no gaps in data collec-
tion. fill_gaps() can help here. This function takes a data.frame with (a) dates, (b) the outcome
being forecasted, and, optionally, (c) dynamic features that change through time, (d) group columns
for multiple time series modeling, and (e) static or non-dynamic features for multiple time series
modeling and returns a data.frame with rows evenly spaced in time. Specifically, this function
adds rows to the input dataset while filling in (a) dates, (b) grouping information, and (c) static
features. The (a) outcome and (b) dynamic features will be NA for any missing time periods; these
NA values can be left as-is, user-imputed, or removed from modeling in the user-supplied modeling
wrapper function for train_model.

Usage

fill_gaps(data, date_col = 1, frequency, groups = NULL, static_features = NULL)

Arguments

data A data.frame or object coercible to a data.frame with, minimally, dates and the
outcome being forecasted.

date_col The column index–an integer–of the date index. This column should have class
’Date’ or ’POSIXt’.

frequency Date/time frequency. A string taking the same input as base::seq.Date(...,
by = "frequency") or base::seq.POSIXt..., by = "frequency") e.g., ’1 hour’,
’1 month’, ’7 days’, ’10 years’ etc. The highest frequency supported at present
is ’1 sec’.

groups Optional. A character vector of column names that identify the unique time
series (i.e., groups/hierarchies) when multiple time series are present.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/UKDriverDeaths.html

16 plot.forecastML

static_features

Optional. For grouped time series only. A character vector of column names that
identify features that do not change through time. These columns are expected
to be used as model features but are not lagged (e.g., a ZIP code column). The
most recent values for each static feature for each group are used to fill in the
resulting missing data in static features when new rows are added to the dataset.

Value

An object of class ’data.frame’: The returned data.frame has the same number of columns and
column order but with additional rows to account for gaps in data collection. For grouped data, any
new rows added to the returned data.frame will appear between the minimum–or oldest–date for
that group and the maximum–or most recent–date across all groups. If the user-supplied forecasting
algorithm(s) cannot handle missing outcome values or missing dynamic features, these should either
be imputed prior to create_lagged_df() or filtered out in the user-supplied modeling function for
train_model.

Methods and related functions

The output of fill_gaps() is passed into

• create_lagged_df

Examples

NOAA buoy dataset with gaps in data collection
data("data_buoy_gaps", package = "forecastML")

data_buoy_no_gaps <- fill_gaps(data_buoy_gaps, date_col = 1, frequency = '1 day',
groups = 'buoy_id', static_features = c('lat', 'lon'))

The returned data.frame has the same number of columns but the time-series
are now evenly spaced at 1 day apart. Additionally, the unchanging grouping
columns and static features columns have been filled in for the newly created dataset rows.
dim(data_buoy_gaps)
dim(data_buoy_no_gaps)

Running create_lagged_df() is the next step in the forecastML forecasting
process. If there are long gaps in data collection, like in this buoy dataset,
and the user-supplied modeling algorithm cannot handle missing outcomes data,
the best option is to filter these rows out in the user-supplied modeling function
for train_model()

plot.forecastML Plot an object of class ’forecastML’

Description

A forecast plot of h-step-ahead forecasts produced from multiple horizon-specific forecast models
using combine_forecasts().

plot.forecastML 17

Usage

S3 method for class 'forecastML'
plot(
x,
data_actual = NULL,
actual_indices = NULL,
facet = ~model,
models = NULL,
group_filter = NULL,
drop_facet = FALSE,
interval_fill = NULL,
interval_alpha = NULL,
...

)

Arguments

x An object of class ’forecastML’ from combine_forecasts().

data_actual A data.frame containing the target/outcome name and any grouping columns.
The data can be historical actuals and/or holdout/test data.

actual_indices Required if data_actual is given. A vector or 1-column data.frame of numeric
row indices or dates (class ’Date’ or ’POSIXt’) with length nrow(data_actual).
The data can be historical actuals and/or holdout/test data.

facet Optional. A formula with any combination of model, or group (for grouped time
series) passed to ggplot2::facet_grid() internally (e.g., ~ model, model ~ .,
~ model + group).

models Optional. Filter results by user-defined model name from train_model().

group_filter Optional. A string for filtering plot results for grouped time-series (e.g., "group_col_1
== 'A'"); passed to dplyr::filter() internally.

drop_facet Optional. Boolean. If actuals are given when forecasting factors, the plot facet
with ’actual’ data can be dropped.

interval_fill A character vector of color names or hex codes to fill the prediction intervals.
For intervals with multiple levels, the first color corresponds to the fill with the
widest interval.

interval_alpha A numeric vector of alpha values to shade the prediction intervals. For intervals
with multiple levels, the first value corresponds to the shading with the widest
interval.

... Not used.

Value

Forecast plot of class ’ggplot’.

18 plot.forecast_error

plot.forecast_error Plot forecast error

Description

Plot forecast error at various levels of aggregation.

Usage

S3 method for class 'forecast_error'
plot(
x,
type = c("global"),
metric = NULL,
facet = NULL,
models = NULL,
horizons = NULL,
windows = NULL,
group_filter = NULL,
...

)

Arguments

x An object of class ’forecast_error’ from return_error().

type Select plot type; type = "global" is the default plot.

metric Select error metric to plot (e.g., "mae"); attributes(x)$error_metrics[1]
is the default metric.

facet Optional. A formula with any combination of horizon, model, or group (for
grouped time series). passed to ggplot2::facet_grid() internally (e.g., horizon
~ model, horizon + model ~ ., ~ horizon + group). Can be NULL. The default
faceting is set internally depending on the plot type.

models Optional. A vector of user-defined model names from train_model() to filter
results.

horizons Optional. A numeric vector to filter results by horizon.

windows Optional. A numeric vector to filter results by validation window number.

group_filter A string for filtering plot results for grouped time series (e.g., "group_col_1 ==
'A'").

... Not used.

Value

Forecast error plots of class ’ggplot’.

plot.forecast_model_hyper 19

plot.forecast_model_hyper

Plot hyperparameters

Description

Plot hyperparameter stability and relationship with error metrics across validation datasets and hori-
zons.

Usage

S3 method for class 'forecast_model_hyper'
plot(
x,
data_results,
data_error,
type = c("stability", "error"),
horizons = NULL,
windows = NULL,
...

)

Arguments

x An object of class ’forecast_model_hyper’ from return_hyper().

data_results An object of class ’training_results’ from predict.forecast_model().

data_error An object of class ’validation_error’ from return_error().

type Select plot type; ’stability’ is the default.

horizons Optional. A numeric vector to filter results by horizon.

windows Optional. A numeric vector to filter results by validation window number.

... Not used.

Value

Hyper-parameter plots of class ’ggplot’.

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")

Example - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,

20 plot.forecast_model_hyper

lookback = lookback, horizon = horizons)

One custom validation window at the end of the dataset.
windows <- create_windows(data_train, window_start = 181, window_stop = 192)

User-define model - LASSO
A user-defined wrapper function for model training that takes the following
arguments: (1) a horizon-specific data.frame made with create_lagged_df(..., type = "train")
(e.g., my_lagged_df$horizon_h) and, optionally, (2) any number of additional named arguments
which are passed as '...' in train_model().
library(glmnet)
model_function <- function(data, my_outcome_col) {

x <- data[, -(my_outcome_col), drop = FALSE]
y <- data[, my_outcome_col, drop = FALSE]
x <- as.matrix(x, ncol = ncol(x))
y <- as.matrix(y, ncol = ncol(y))

model <- glmnet::cv.glmnet(x, y, nfolds = 3)
return(model)

}

my_outcome_col = 1 is passed in ... but could have been defined in model_function().
model_results <- train_model(data_train, windows, model_name = "LASSO", model_function,

my_outcome_col = 1)

User-defined prediction function - LASSO
The predict() wrapper takes two positional arguments. First,
the returned model from the user-defined modeling function (model_function() above).
Second, a data.frame of predictors--identical to the datasets returned from
create_lagged_df(..., type = "train"). The function can return a 1- or 3-column data.frame
with either (a) point forecasts or (b) point forecasts plus lower and upper forecast
bounds (column order and column names do not matter).
prediction_function <- function(model, data_features) {

x <- as.matrix(data_features, ncol = ncol(data_features))

data_pred <- data.frame("y_pred" = predict(model, x, s = "lambda.min"))
return(data_pred)

}

Predict on the validation datasets.
data_valid <- predict(model_results, prediction_function = list(prediction_function),

data = data_train)

User-defined hyperparameter function - LASSO
The hyperparameter function should take one positional argument--the returned model
from the user-defined modeling function (model_function() above). It should
return a 1-row data.frame of the optimal hyperparameters.
hyper_function <- function(model) {

lambda_min <- model$lambda.min
lambda_1se <- model$lambda.1se

plot.forecast_results 21

data_hyper <- data.frame("lambda_min" = lambda_min, "lambda_1se" = lambda_1se)
return(data_hyper)

}

data_error <- return_error(data_valid)

data_hyper <- return_hyper(model_results, hyper_function)

plot(data_hyper, data_valid, data_error, type = "stability", horizons = c(1, 12))

plot.forecast_results Plot an object of class forecast_results

Description

A forecast plot for each horizon for each model in predict.forecast_model().

Usage

S3 method for class 'forecast_results'
plot(
x,
data_actual = NULL,
actual_indices = NULL,
facet = horizon ~ model,
models = NULL,
horizons = NULL,
windows = NULL,
group_filter = NULL,
...

)

Arguments

x An object of class ’forecast_results’ from predict.forecast_model().

data_actual A data.frame containing the target/outcome name and any grouping columns.
The data can be historical actuals and/or holdout/test data.

actual_indices Required if data_actual is given. A vector or 1-column data.frame of numeric
row indices or dates (class ’Date’ or ’POSIXt’) with length nrow(data_actual).
The data can be historical actuals and/or holdout/test data.

facet Optional. For numeric outcomes, a formula with any combination of horizon,
model, or group (for grouped time series) passed to ggplot2::facet_grid()
internally (e.g., horizon ~ model, horizon + model ~ ., ~ horizon + group).
Can be NULL.

models Optional. Filter results by user-defined model name from train_model().

22 plot.lagged_df

horizons Optional. Filter results by horizon.

windows Optional. Filter results by validation window number.

group_filter Optional. A string for filtering plot results for grouped time-series (e.g., "group_col_1
== 'A'"); passed to dplyr::filter() internally.

... Not used.

Value

Forecast plot of class ’ggplot’.

plot.lagged_df Plot datasets with lagged features

Description

Plot datasets with lagged features to view ther direct forecasting setup across horizons.

Usage

S3 method for class 'lagged_df'
plot(x, ...)

Arguments

x An object of class ’lagged_df’ from create_lagged_df().

... Not used.

Value

A single plot of class ’ggplot’ if lookback was specified in create_lagged_df(); a list of plots,
one per feature, of class ’ggplot’ if lookback_control was specified.

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")
#--
Example 1 - Training data for 3 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 6, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

plot(data_train)
#--
Example 2 - Training data for one 3-month horizon model w/ unique lags per predictor.
horizons <- 3
lookback <- list(c(3, 6, 9, 12), c(4:12), c(6:15), c(8))

plot.training_results 23

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback_control = lookback, horizon = horizons)

plot(data_train)

plot.training_results Plot an object of class training_results

Description

Several diagnostic plots can be returned to assess the quality of the forecasts based on predictions
on the validation datasets.

Usage

S3 method for class 'training_results'
plot(
x,
type = c("prediction", "residual", "forecast_stability"),
facet = horizon ~ model,
models = NULL,
horizons = NULL,
windows = NULL,
valid_indices = NULL,
group_filter = NULL,
keep_missing = FALSE,
...

)

Arguments

x An object of class ’training_results’ from predict.forecast_model().
type Plot type. The default plot is "prediction" for validation dataset predictions.
facet Optional. For numeric outcomes, a formula with any combination of horizon,

model, or group (for grouped time series) passed to ggplot2::facet_grid()
internally (e.g., horizon ~ model, horizon + model ~ ., ~ horizon + group).

models Optional. Filter results by user-defined model name from train_model().
horizons Optional. A numeric vector of model forecast horizons to filter results by horizon-

specific model.
windows Optional. A numeric vector of window numbers to filter results.
valid_indices Optional. A numeric or date vector to filter results by validation row indices or

dates.
group_filter Optional. A string for filtering plot results for grouped time series (e.g., "group_col_1

== 'A'"). The results are passed to dplyr::filter() internally.
keep_missing Boolean. If TRUE, predictions are plotted for indices/dates where the outcome is

missing.
... Not used.

24 plot.validation_error

Value

Diagnostic plots of class ’ggplot’.

plot.validation_error Plot validation dataset forecast error

Description

Plot forecast error at various levels of aggregation across validation datasets.

Usage

S3 method for class 'validation_error'
plot(
x,
type = c("window", "horizon", "global"),
metric = NULL,
facet = NULL,
models = NULL,
horizons = NULL,
windows = NULL,
group_filter = NULL,
...

)

Arguments

x An object of class ’validation_error’ from return_error().
type Select plot type; type = "window" is the default plot.
metric Select error metric to plot (e.g., "mae"); attributes(x)$error_metrics[1]

is the default metric.
facet Optional. A formula with any combination of horizon, model, or group (for

grouped time series). passed to ggplot2::facet_grid() internally (e.g., horizon
~ model, horizon + model ~ ., ~ horizon + group). Can be NULL. The default
faceting is set internally depending on the plot type.

models Optional. A vector of user-defined model names from train_model() to filter
results.

horizons Optional. A numeric vector to filter results by horizon.
windows Optional. A numeric vector to filter results by validation window number.
group_filter A string for filtering plot results for grouped time series (e.g., "group_col_1 ==

'A'").
... Not used.

Value

Forecast error plots of class ’ggplot’.

plot.windows 25

plot.windows Plot validation datasets

Description

Plot validation datasets across time.

Usage

S3 method for class 'windows'
plot(x, lagged_df, show_labels = TRUE, group_filter = NULL, ...)

Arguments

x An object of class ’windows’ from create_windows().

lagged_df An object of class ’lagged_df’ from create_lagged_df().

show_labels Boolean. If TRUE, show validation dataset IDs on the plot.

group_filter Optional. A string for filtering plot results for grouped time series (e.g., "group_col_1
== 'A'"). This string is passed to dplyr::filter() internally.

... Not used.

Value

A plot of the outer-loop nested cross-validation windows of class ’ggplot’.

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")

Example - Training data for 3 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 6, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

All historical window lengths of 12 plus any partial windows at the end of the dataset.
windows <- create_windows(data_train, window_length = 12)
plot(windows, data_train)

Two custom validation windows with different lengths.
windows <- create_windows(data_train, window_start = c(20, 80), window_stop = c(30, 100))
plot(windows, data_train)

26 predict.forecast_model

predict.forecast_model

Predict on validation datasets or forecast

Description

Predict with a ’forecast_model’ object from train_model(). If data = create_lagged_df(...,
type = "train"), predictions are returned for the outer-loop nested cross-validation datasets. If
data is an object of class ’lagged_df’ from create_lagged_df(..., type = "forecast"), pre-
dictions are returned for the horizons specified in create_lagged_df(horizons = ...).

Usage

S3 method for class 'forecast_model'
predict(..., prediction_function = list(NULL), data)

Arguments

... One or more trained models from train_model().
prediction_function

A list of user-defined prediction functions with length equal to the number of
models supplied in The prediction functions take 2 required positional
arguments–(1) a ’forecast_model’ object from train_model() and (2) a data.frame
of model features from create_lagged_df(). For numeric outcomes and method
= "direct", the function should return() 1- or 3-column data.frame of model
predictions. If the prediction function returns a 1-column data.frame, point fore-
casts are assumed. If the prediction function returns a 3-column data.frame,
lower and upper forecast bounds are assumed (the order and names of the 3
columns does not matter). For factor outcomes and method = "direct", the
function should return() (1) 1-column data.frame of the model-predicted fac-
tor level or (2) an L-column data.frame of class probabilities where ’L’ equals
the number of levels in the outcome; columns should be ordered, from left to
right, the same as levels(data$outcome) which is the default behavior for
most predict(..., type = "prob") functions. Column names do not mat-
ter. For numeric outcomes and method = "multi_output", the function should
return() and h-column data.frame of model predictions–1 column for each
horizon. Forecast intervals and factor outcomes are not currently supported with
method = "multi_output".

data If data is a training dataset from create_lagged_df(..., type = "train"),
validation dataset predictions are returned; else, if data is a forecasting dataset
from create_lagged_df(..., type = "forecast"), forecasts from horizons
1:h are returned.

Value

If data = create_lagged_df(..., type = "forecast"), an S3 object of class ’training_results’.
If data = create_lagged_df(..., type = "forecast"), an S3 object of class ’forecast_results’.

predict.forecast_model 27

Columns in returned ’training_results’ data.frame:

• model: User-supplied model name in train_model().

• model_forecast_horizon: The direct-forecasting time horizon that the model was trained
on.

• window_length: Validation window length measured in dataset rows.

• window_number: Validation dataset number.

• valid_indices: Validation dataset row names from attributes(create_lagged_df())$row_indices.

• date_indices: If given and method = "direct", validation dataset date indices from attributes(create_lagged_df())$date_indices.
If given and method = "multi_output", date_indices represents the date of the forecast.

• "groups": If given, the user-supplied groups in create_lagged_df().

• "outcome_name": The target being forecasted.

• "outcome_name"_pred: The model predictions.

• "outcome_name"_pred_lower: If given, the lower prediction bounds returned by the user-
supplied prediction function.

• "outcome_name"_pred_upper: If given, the upper prediction bounds returned by the user-
supplied prediction function.

• forecast_indices: If method = "multi_output", the validation index of the h-step-ahead
forecast.

• forecast_date_indices: If method = "multi_output", the validation date index of the h-
step-ahead forecast.

Columns in returned ’forecast_results’ data.frame:

• model: User-supplied model name in train_model().

• model_forecast_horizon: If method = "direct", the direct-forecasting time horizon that
the model was trained on.

• horizon: Forecast horizons, 1:h, measured in dataset rows.

• window_length: Validation window length measured in dataset rows.

• forecast_period: The forecast period in row indices or dates. The forecast period starts at
either attributes(create_lagged_df())$data_stop + 1 for row indices or attributes(create_lagged_df())$data_stop
+ 1 * frequency for date indices.

• "groups": If given, the user-supplied groups in create_lagged_df().

• "outcome_name": The target being forecasted.

• "outcome_name"_pred: The model forecasts.

• "outcome_name"_pred_lower: If given, the lower forecast bounds returned by the user-
supplied prediction function.

• "outcome_name"_pred_upper: If given, the upper forecast bounds returned by the user-
supplied prediction function.

28 predict.forecast_model

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")

Example - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

One custom validation window at the end of the dataset.
windows <- create_windows(data_train, window_start = 181, window_stop = 192)

User-define model - LASSO
A user-defined wrapper function for model training that takes the following
arguments: (1) a horizon-specific data.frame made with create_lagged_df(..., type = "train")
(e.g., my_lagged_df$horizon_h) and, optionally, (2) any number of additional named arguments
which are passed as '...' in train_model().
library(glmnet)
model_function <- function(data, my_outcome_col) {

x <- data[, -(my_outcome_col), drop = FALSE]
y <- data[, my_outcome_col, drop = FALSE]
x <- as.matrix(x, ncol = ncol(x))
y <- as.matrix(y, ncol = ncol(y))

model <- glmnet::cv.glmnet(x, y, nfolds = 3)
return(model)

}

my_outcome_col = 1 is passed in ... but could have been defined in model_function().
model_results <- train_model(data_train, windows, model_name = "LASSO", model_function,

my_outcome_col = 1)

User-defined prediction function - LASSO
The predict() wrapper takes two positional arguments. First,
the returned model from the user-defined modeling function (model_function() above).
Second, a data.frame of predictors--identical to the datasets returned from
create_lagged_df(..., type = "train"). The function can return a 1- or 3-column data.frame
with either (a) point forecasts or (b) point forecasts plus lower and upper forecast
bounds (column order and column names do not matter).
prediction_function <- function(model, data_features) {

x <- as.matrix(data_features, ncol = ncol(data_features))

data_pred <- data.frame("y_pred" = predict(model, x, s = "lambda.min"))
return(data_pred)

}

Predict on the validation datasets.
data_valid <- predict(model_results, prediction_function = list(prediction_function),

reconcile_forecasts 29

data = data_train)

Forecast.
data_forecast <- create_lagged_df(data_seatbelts, type = "forecast", outcome_col = 1,

lookback = lookback, horizon = horizons)

data_forecasts <- predict(model_results, prediction_function = list(prediction_function),
data = data_forecast)

reconcile_forecasts Reconcile multiple temporal or hierarchical forecasts

Description

The purpose of forecast reconciliation is to produce a single coherent forecast from multiple fore-
casts produced at (a) different time horizons (e.g., monthly and quarterly) and/or (b) different lev-
els of aggregation (e.g., classroom, school, and school district). After forecast reconciliation, the
bottom-level or most disaggregated forecast can simply be summed up to produce all higher-level
forecasts.

Usage

reconcile_forecasts(
forecasts,
frequency,
index,
outcome,
keys = NULL,
method,
keep_all = TRUE,
keep_non_reconciled = FALSE

)

Arguments

forecasts A list of 2 or more dataframes with forecasts. Each dataframe must have a date
column named index of class Date or POSIXt and a forecast column named
outcome of class numeric. Forecasts should be sorted from oldest (top) to
newest (bottom).

frequency A character vector of length(forecasts) that identifies the date/time frequency
of the forecast. Each string should work with base::seq.Date(..., by = "frequency")
or base::seq.POSIXt(..., by = "frequency") e.g., ’1 hour’, ’1 month’, ’7
days’, ’10 years’ etc.

index A string giving the column name of the date column which should be common
across forecasts.

outcome A string giving the column name of the forecast which should be common across
forecasts.

30 reconcile_forecasts

keys Optional. For forecast reconciliation across groups, a unique() vector of col-
umn names listing all of the keys that identify a distinct time series across the
datasets in forecasts. If not specified, all columns that are not in index or
outcome are treated as grouping keys for each dataset in forecasts.

method One of c("temporal", "group"). See the Implementation section for details.

keep_all Boolean. For method = "temporal". If TRUE, reconciled forecasts at all levels
are returned. If FALSE, only the bottom-level or most disaggregated forecast is
returned which can be manually aggregated as needed.

keep_non_reconciled

Boolean. For method = "temporal". If TRUE, any additional higher frequency
forecasts that fell outside of the date range of the lowest frequency forecast are
returned with their same forecast value from forecasts.

Value

A data.frame of reconciled forecasts.

Implementation

• method = ’temporal’: Forecasts are reconciled across forecast horizons.

– Structural scaling with weights from temporal hierarchies from Athanasopoulos et al.
(2017).

– To produce correct forecast reconciliations, all forecasts at the lowest/disaggregated level
should be present for all horizons contained in the forecasts with the higher levels of
aggregation (e.g., 24 monthly forecasts for 2 annual forecasts or 21 daily forecasts for 3
weekly forecasts).

• method = ’group’: Forecasts are reconciled across groups independently at each forecast
horizon.

– Structural scaling from Hyndman et al. (2011).
– A key column is not needed for the forecast at the highest level of aggregation.
– Having input forecasts at each level of aggregation is not a requirement. For example,

forecasts by nation, state, and city could be reconciled with only 2 input forecasts: 1
for nation (highest aggregation) and 1 for the combination of nation by state by city
(lowest/no aggregation) without the 2 intermediate-level forecasts at the state and city
levels.

References

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., & Petropoulos, F. (2017). Forecasting
with temporal hierarchies. European Journal of Operational Research, 262(1), 60-74. https:
//robjhyndman.com/papers/temporalhierarchies.pdf

Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination
forecasts for hierarchical time series. Computational statistics & data analysis, 55(9), 2579-2589.
http://robjhyndman.com/papers/hierarchical

https://robjhyndman.com/papers/temporalhierarchies.pdf
https://robjhyndman.com/papers/temporalhierarchies.pdf
http://robjhyndman.com/papers/hierarchical

reconcile_forecasts 31

Examples

#--
Temporal example 1: 2 forecasts, daily/monthly, 2 forecast periods at highest aggregation.
freq <- c("1 day", "1 month")

data_1_day <- data.frame("index" = seq(as.Date("2020-1-1"), as.Date("2020-2-29"), by = freq[1]),
"forecast" = c(rep(5, 31), rep(7, 29)))

data_1_month <- data.frame("index" = seq(as.Date("2020-1-1"), as.Date("2020-2-1"), by = freq[2]),
"forecast" = c(150, 200))

forecasts_reconciled <- reconcile_forecasts(list(data_1_day, data_1_month), freq,
index = "index", outcome = "forecast",
method = "temporal")

#--
Temporal example 2: 3 forecasts, monthly/4-monthly/annually, 1 forecast period at highest aggregation.
freq <- c("1 month", "4 months", "1 year")

data_1_month <- data.frame("index" = seq(as.Date("2020-1-1"), as.Date("2020-12-1"), by = freq[1]),
"forecast" = rep(10, 12))

data_4_months <- data.frame("index" = seq(as.Date("2020-1-1"), as.Date("2020-12-1"), by = freq[2]),
"forecast" = c(40, 50, 45))

data_1_year <- data.frame("index" = as.Date("2020-01-01"),
"forecast" = c(110))

forecasts_reconciled <- reconcile_forecasts(list(data_1_month, data_4_months, data_1_year), freq,
index = "index", outcome = "forecast",
method = "temporal")

#--
Temporal example 3: 2 forecasts, weekly/monthly, 2 forecast periods at highest aggregation.
freq <- c("1 week", "1 month")

data_1_week <- data.frame("index" = seq(as.Date("2020-1-1"), as.Date("2020-3-1"), by = freq[1]),
"forecast" = c(rep(3, 5), rep(2, 4)))

data_1_month <- data.frame("index" = seq(as.Date("2020-1-1"), as.Date("2020-2-1"), by = freq[2]),
"forecast" = c(11, 12))

forecasts_reconciled <- reconcile_forecasts(list(data_1_week, data_1_month), freq,
index = "index", outcome = "forecast",
method = "temporal")

#--
Temporal example 4: 2 forecasts, hourly/daily, 3 forecast periods at highest aggregation.
freq <- c("1 hour", "1 day")
timezone <- "UTC"

data_1_hour <- data.frame("index" = seq(as.POSIXct("2020-01-01 00:00:00", tz = timezone),
as.POSIXct("2020-01-03 23:00:00", tz = timezone),
by = freq[1]),

"forecast" = rep(c(3, 5), 72 / 2))

32 reconcile_forecasts

data_1_day <- data.frame("index" = seq(as.Date("2020-1-1"), as.Date("2020-1-3"), by = freq[2]),
"forecast" = c(90, 100, 105))

forecasts_reconciled <- reconcile_forecasts(list(data_1_hour, data_1_day), freq,
index = "index", outcome = "forecast",
method = "temporal")

#--
Grouped example 1: 2 forecasts, completely nested/hierarchical.
freq <- c("1 month")

dates <- seq(as.Date("2020-1-1"), as.Date("2020-3-1"), by = freq)

data_total <- data.frame("index" = dates,
"forecast" = c(50, 100, 75))

data_state <- data.frame("index" = rep(dates, 2),
"state" = c(rep("IL", length(dates)), rep("WI", length(dates))),
"forecast" = c(20, 60, 40, 25, 40, 50))

forecasts <- list("total" = data_total, "state" = data_state)

forecasts_reconciled <- reconcile_forecasts(forecasts, freq,
index = "index", outcome = "forecast",
method = "group")

#--
Grouped example 2: 4 forecasts, non-nested.
freq <- c("1 month")

dates <- seq(as.Date("2020-1-1"), as.Date("2020-3-1"), by = freq)

data_total <- data.frame("index" = dates,
"forecast" = c(50, 100, 75))

data_state <- data.frame("index" = rep(dates, 2),
"state" = c(rep("IL", length(dates)), rep("WI", length(dates))),
"forecast" = c(20, 60, 40, 25, 40, 50))

data_sex <- data.frame("index" = rep(dates, 2),
"sex" = c(rep("M", length(dates)), rep("F", length(dates))),
"forecast" = c(25, 45, 40, 35, 40, 20))

data_state_sex <- data.frame("index" = rep(dates, 4),
"state" = c(rep("IL", length(dates)*2), rep("WI", length(dates)*2)),

"sex" = c(rep("M", 3), rep("F", 3), rep("M", 3), rep("F", 3)),
"forecast" = c(5, 15, 10, 30, 10, 10, 25, 30, 20, 10, 10, 15))

forecasts <- list("total" = data_total, "state" = data_state,
"sex" = data_sex, "state_sex" = data_state_sex)

forecasts_reconciled <- reconcile_forecasts(forecasts, freq,
index = "index", outcome = "forecast",
method = "group")

residuals 33

residuals Return model residuals

Description

Return model residuals

Usage

residuals(object, ...)

Arguments

object An object of class ’training_results’ from running predict() on a training
dataset.

... Not used.

Value

A data.frame of model residuals of class ’training_residuals’.

return_error Compute forecast error

Description

Compute forecast error metrics on the validation datasets or a new test dataset.

Usage

return_error(
data_results,
data_test = NULL,
test_indices = NULL,
aggregate = stats::median,
metrics = c("mae", "mape", "mdape", "smape", "rmse", "rmsse"),
models = NULL,
horizons = NULL,
windows = NULL,
group_filter = NULL

)

34 return_error

Arguments

data_results An object of class ’training_results’ or ’forecast_results’ from running (a) predict
on a trained model or (b) combine_forecasts().

data_test Required for forecast results only. If data_results is an object of class ’fore-
cast_results’, a data.frame used to assess the accuracy of a ’forecast_results’
object. data_test should have the outcome/target columns and any grouping
columns.

test_indices Required if data_test is given or ’rmsse’ row indices or dates (class ’Date’ or
’POSIXt’) with length nrow(data_test).

aggregate Default median. A function–without parentheses–that aggregates historical pre-
diction or forecast error across time series. All error metrics are first calculated
at the level of the individual time series. aggregate is then used to combine er-
ror metrics across validation windows and horizons. Aggregations are returned
at the group level if data_results contains groups.

metrics A character vector of common forecast error metrics. The default behavior is to
return all metrics.

models Optional. A character vector of user-defined model names supplied to train_model()
to filter results.

horizons Optional. A numeric vector to filter results by horizon.

windows Optional. A numeric vector to filter results by validation window number.

group_filter Optional. A string for filtering plot results for grouped time series (e.g., "group_col_1
== 'A'"). group_filter is passed to dplyr::filter() internally.

Value

An S3 object of class ’validation_error’, ’forecast_error’, or ’forecastML_error’: A list of data.frames
of error metrics for the validation or forecast dataset depending on the class of data_results:
’training_results’, ’forecast_results’, or ’forecastML’ from combine_forecasts().

A list containing:

• Error metrics by model, horizon, and validation window

• Error metrics by model and horizon, collapsed across validation windows

• Global error metrics by model collapsed across horizons and validation windows

Error Metrics

• mae: Mean absolute error (works with factor outcomes)

• mape: Mean absolute percentage error

• mdape: Median absolute percentage error

• smape: Symmetrical mean absolute percentage error

• rmse: Root mean squared error

• rmsse: Root mean squared scaled error from the M5 competition

return_error 35

Methods and related functions

The output of return_error() has the following generic S3 methods

• plot from return_error()

• plot from return_error()

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")

Example - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

One custom validation window at the end of the dataset.
windows <- create_windows(data_train, window_start = 181, window_stop = 192)

User-define model - LASSO
A user-defined wrapper function for model training that takes the following
arguments: (1) a horizon-specific data.frame made with create_lagged_df(..., type = "train")
(e.g., my_lagged_df$horizon_h) and, optionally, (2) any number of additional named arguments
which are passed as '...' in train_model().
library(glmnet)
model_function <- function(data, my_outcome_col) {

x <- data[, -(my_outcome_col), drop = FALSE]
y <- data[, my_outcome_col, drop = FALSE]
x <- as.matrix(x, ncol = ncol(x))
y <- as.matrix(y, ncol = ncol(y))

model <- glmnet::cv.glmnet(x, y, nfolds = 3)
return(model)

}

my_outcome_col = 1 is passed in ... but could have been defined in model_function().
model_results <- train_model(data_train, windows, model_name = "LASSO", model_function,

my_outcome_col = 1)

User-defined prediction function - LASSO
The predict() wrapper takes two positional arguments. First,
the returned model from the user-defined modeling function (model_function() above).
Second, a data.frame of predictors--identical to the datasets returned from
create_lagged_df(..., type = "train"). The function can return a 1- or 3-column data.frame
with either (a) point forecasts or (b) point forecasts plus lower and upper forecast
bounds (column order and column names do not matter).
prediction_function <- function(model, data_features) {

x <- as.matrix(data_features, ncol = ncol(data_features))

36 return_hyper

data_pred <- data.frame("y_pred" = predict(model, x, s = "lambda.min"))
return(data_pred)

}

Predict on the validation datasets.
data_valid <- predict(model_results, prediction_function = list(prediction_function),

data = data_train)

Forecast error metrics for validation datasets.
data_error <- return_error(data_valid)

return_hyper Return model hyperparameters across validation datasets

Description

The purpose of this function is to support investigation into the stability of hyperparameters in the
nested cross-validation and across forecast horizons.

Usage

return_hyper(forecast_model, hyper_function)

Arguments

forecast_model An object of class ’forecast_model’ from train_model.

hyper_function A user-defined function for retrieving model hyperparameters. See the example
below for details.

Value

An S3 object of class ’forecast_model_hyper’: A data.frame of model-specific hyperparameters.

Methods and related functions

The output of return_hyper() has the following generic S3 methods

• plot

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")

Example - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15

return_hyper 37

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

One custom validation window at the end of the dataset.
windows <- create_windows(data_train, window_start = 181, window_stop = 192)

User-define model - LASSO
A user-defined wrapper function for model training that takes the following
arguments: (1) a horizon-specific data.frame made with create_lagged_df(..., type = "train")
(e.g., my_lagged_df$horizon_h) and, optionally, (2) any number of additional named arguments
which are passed as '...' in train_model().
library(glmnet)
model_function <- function(data, my_outcome_col) {

x <- data[, -(my_outcome_col), drop = FALSE]
y <- data[, my_outcome_col, drop = FALSE]
x <- as.matrix(x, ncol = ncol(x))
y <- as.matrix(y, ncol = ncol(y))

model <- glmnet::cv.glmnet(x, y, nfolds = 3)
return(model)

}

my_outcome_col = 1 is passed in ... but could have been defined in model_function().
model_results <- train_model(data_train, windows, model_name = "LASSO", model_function,

my_outcome_col = 1)

User-defined prediction function - LASSO
The predict() wrapper takes two positional arguments. First,
the returned model from the user-defined modeling function (model_function() above).
Second, a data.frame of predictors--identical to the datasets returned from
create_lagged_df(..., type = "train"). The function can return a 1- or 3-column data.frame
with either (a) point forecasts or (b) point forecasts plus lower and upper forecast
bounds (column order and column names do not matter).
prediction_function <- function(model, data_features) {

x <- as.matrix(data_features, ncol = ncol(data_features))

data_pred <- data.frame("y_pred" = predict(model, x, s = "lambda.min"))
return(data_pred)

}

Predict on the validation datasets.
data_valid <- predict(model_results, prediction_function = list(prediction_function),

data = data_train)

User-defined hyperparameter function - LASSO
The hyperparameter function should take one positional argument--the returned model
from the user-defined modeling function (model_function() above). It should
return a 1-row data.frame of the optimal hyperparameters.
hyper_function <- function(model) {

lambda_min <- model$lambda.min

38 train_model

lambda_1se <- model$lambda.1se

data_hyper <- data.frame("lambda_min" = lambda_min, "lambda_1se" = lambda_1se)
return(data_hyper)

}

data_error <- return_error(data_valid)

data_hyper <- return_hyper(model_results, hyper_function)

plot(data_hyper, data_valid, data_error, type = "stability", horizons = c(1, 12))

summary.lagged_df Return a summary of a lagged_df object

Description

Return a summary of a lagged_df object

Usage

S3 method for class 'lagged_df'
summary(object, ...)

Arguments

object An object of class ’lagged_df’ from create_lagged_df().

... Not used.

Value

A printed summary of the contents of the lagged_df object.

train_model Train a model across horizons and validation datasets

Description

Train a user-defined forecast model for each horizon, ’h’, and across the validation datasets, ’d’. If
method = "direct", a total of ’h’ * ’d’ models are trained. If method = "multi_output", a total of
1 * ’d’ models are trained. These models can be trained in parallel with the future package.

train_model 39

Usage

train_model(
lagged_df,
windows,
model_name,
model_function,
...,
use_future = FALSE,
python = FALSE

)

Arguments

lagged_df An object of class ’lagged_df’ from create_lagged_df.

windows An object of class ’windows’ from create_windows.

model_name A name for the model.

model_function A user-defined wrapper function for model training that takes the following ar-
guments: (1) a horizon-specific data.frame made with create_lagged_df(...,
type = "train") (i.e., the dataset(s) stored in lagged_df) and, optionally, (2)
any number of additional named arguments which can be passed in ... in this
function.

... Optional. Named arguments passed into the user-defined model_function.

use_future Boolean. If TRUE, the future package is used for training models in parallel.
The models will train in parallel across either (1) model forecast horizons or (b)
validation windows, whichever is longer (i.e., length(create_lagged_df())
or nrow(create_windows())). The user should run future::plan(future::multiprocess)
or similar prior to this function to train these models in parallel.

python Boolean. If TRUE, the reticulate package is used for model training.

Value

An S3 object of class ’forecast_model’: A nested list of trained models. Models can be accessed
with my_trained_model$horizon_h$window_w$model where ’h’ gives the forecast horizon and
’w’ gives the validation dataset window number from create_windows().

Methods and related functions

The output of train_model can be passed into

• return_error

• return_hyper

and has the following generic S3 methods

• predict

• plot (from predict.forecast_model(data = create_lagged_df(..., type = "train")))

• plot (from predict.forecast_model(data = create_lagged_df(..., type = "forecast")))

40 train_model

Examples

Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")

Example - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15

data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)

One custom validation window at the end of the dataset.
windows <- create_windows(data_train, window_start = 181, window_stop = 192)

User-define model - LASSO
A user-defined wrapper function for model training that takes the following
arguments: (1) a horizon-specific data.frame made with create_lagged_df(..., type = "train")
(e.g., my_lagged_df$horizon_h) and, optionally, (2) any number of additional named arguments
which are passed as '...' in train_model().
library(glmnet)
model_function <- function(data, my_outcome_col) {

x <- data[, -(my_outcome_col), drop = FALSE]
y <- data[, my_outcome_col, drop = FALSE]
x <- as.matrix(x, ncol = ncol(x))
y <- as.matrix(y, ncol = ncol(y))

model <- glmnet::cv.glmnet(x, y, nfolds = 3)
return(model)

}

my_outcome_col = 1 is passed in ... but could have been defined in model_function().
model_results <- train_model(data_train, windows, model_name = "LASSO", model_function,

my_outcome_col = 1)

View the results for the model (a) trained on the first horizon
and (b) to be assessed on the first outer-loop validation window.
model_results$horizon_1$window_1$model

Index

∗ datasets
data_buoy, 13
data_buoy_gaps, 14
data_seatbelts, 14

calculate_intervals, 2
combine_forecasts, 4
create_lagged_df, 7, 12, 15, 16, 39
create_skeleton, 11
create_windows, 10, 11, 11, 39

data_buoy, 13, 14
data_buoy_gaps, 14
data_seatbelts, 14

fill_gaps, 7, 15

plot, 6, 10, 12, 35, 36, 39
plot.forecast_error, 18
plot.forecast_model_hyper, 19
plot.forecast_results, 21
plot.forecastML, 16
plot.lagged_df, 22
plot.training_results, 23
plot.validation_error, 24
plot.windows, 25
predict, 34, 39
predict.forecast_model, 26

reconcile_forecasts, 29
residuals, 33
return_error, 33, 39
return_hyper, 36, 39

summary, 10
summary.lagged_df, 38

train_model, 12, 15, 16, 36, 38

41

	calculate_intervals
	combine_forecasts
	create_lagged_df
	create_skeleton
	create_windows
	data_buoy
	data_buoy_gaps
	data_seatbelts
	fill_gaps
	plot.forecastML
	plot.forecast_error
	plot.forecast_model_hyper
	plot.forecast_results
	plot.lagged_df
	plot.training_results
	plot.validation_error
	plot.windows
	predict.forecast_model
	reconcile_forecasts
	residuals
	return_error
	return_hyper
	summary.lagged_df
	train_model
	Index

