Package: forecastML 0.9.1

forecastML: Time Series Forecasting with Machine Learning Methods

The purpose of 'forecastML' is to simplify the process of multi-step-ahead forecasting with standard machine learning algorithms. 'forecastML' supports lagged, dynamic, static, and grouping features for modeling single and grouped numeric or factor/sequence time series. In addition, simple wrapper functions are used to support model-building with most R packages. This approach to forecasting is inspired by Bergmeir, Hyndman, and Koo's (2018) paper "A note on the validity of cross-validation for evaluating autoregressive time series prediction" <doi:10.1016/j.csda.2017.11.003>.

Authors:Nickalus Redell

forecastML_0.9.1.tar.gz
forecastML_0.9.1.zip(r-4.5)forecastML_0.9.1.zip(r-4.4)forecastML_0.9.1.zip(r-4.3)
forecastML_0.9.1.tgz(r-4.4-any)forecastML_0.9.1.tgz(r-4.3-any)
forecastML_0.9.1.tar.gz(r-4.5-noble)forecastML_0.9.1.tar.gz(r-4.4-noble)
forecastML_0.9.1.tgz(r-4.4-emscripten)forecastML_0.9.1.tgz(r-4.3-emscripten)
forecastML.pdf |forecastML.html
forecastML/json (API)

# Install 'forecastML' in R:
install.packages('forecastML', repos = c('https://nredell.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nredell/forecastml/issues

Datasets:

On CRAN:

deep-learningdirect-forecastingforecastforecastingmachine-learningmulti-step-ahead-forecastingneural-networkpythontime-series

7.62 score 130 stars 127 scripts 359 downloads 11 exports 47 dependencies

Last updated 4 years agofrom:282ebe0b7e. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-winNOTEOct 26 2024
R-4.5-linuxNOTEOct 26 2024
R-4.4-winNOTEOct 26 2024
R-4.4-macNOTEOct 26 2024
R-4.3-winNOTEOct 26 2024
R-4.3-macNOTEOct 26 2024

Exports:calculate_intervalscombine_forecastscreate_lagged_dfcreate_skeletoncreate_windowsfill_gapsreconcile_forecastsresidualsreturn_errorreturn_hypertrain_model

Dependencies:clicodetoolscolorspacecpp11data.tabledigestdplyrdtplyrfansifarverfuturefuture.applygenericsggplot2globalsgluegtableisobandlabelinglatticelifecyclelistenvlubridatemagrittrMASSMatrixmgcvmunsellnlmeparallellypillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselecttimechangeutf8vctrsviridisLitewithr

Custom Feature Lags

Rendered fromlagged_features.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2020-02-13
Started: 2019-09-02

Customizing Wrapper Functions

Rendered fromcustom_functions.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2020-02-28
Started: 2019-09-22

Direct Forecasting with Multiple Time Series

Rendered fromgrouped_forecast.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2020-04-19
Started: 2019-09-02

Forecast Combination

Rendered fromcombine_forecasts.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2020-05-19
Started: 2020-04-06

forecastML Overview

Rendered frompackage_overview.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2020-04-19
Started: 2019-09-03