Package: forecastML 0.9.1
forecastML: Time Series Forecasting with Machine Learning Methods
The purpose of 'forecastML' is to simplify the process of multi-step-ahead forecasting with standard machine learning algorithms. 'forecastML' supports lagged, dynamic, static, and grouping features for modeling single and grouped numeric or factor/sequence time series. In addition, simple wrapper functions are used to support model-building with most R packages. This approach to forecasting is inspired by Bergmeir, Hyndman, and Koo's (2018) paper "A note on the validity of cross-validation for evaluating autoregressive time series prediction" <doi:10.1016/j.csda.2017.11.003>.
Authors:
forecastML_0.9.1.tar.gz
forecastML_0.9.1.zip(r-4.5)forecastML_0.9.1.zip(r-4.4)forecastML_0.9.1.zip(r-4.3)
forecastML_0.9.1.tgz(r-4.4-any)forecastML_0.9.1.tgz(r-4.3-any)
forecastML_0.9.1.tar.gz(r-4.5-noble)forecastML_0.9.1.tar.gz(r-4.4-noble)
forecastML_0.9.1.tgz(r-4.4-emscripten)forecastML_0.9.1.tgz(r-4.3-emscripten)
forecastML.pdf |forecastML.html✨
forecastML/json (API)
# Install 'forecastML' in R: |
install.packages('forecastML', repos = c('https://nredell.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nredell/forecastml/issues
- data_buoy - NOAA buoy weather data
- data_buoy_gaps - NOAA buoy weather data
- data_seatbelts - Road Casualties in Great Britain 1969-84
deep-learningdirect-forecastingforecastforecastingmachine-learningmulti-step-ahead-forecastingneural-networkpythontime-series
Last updated 4 years agofrom:282ebe0b7e. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | NOTE | Oct 26 2024 |
R-4.5-linux | NOTE | Oct 26 2024 |
R-4.4-win | NOTE | Oct 26 2024 |
R-4.4-mac | NOTE | Oct 26 2024 |
R-4.3-win | NOTE | Oct 26 2024 |
R-4.3-mac | NOTE | Oct 26 2024 |
Exports:calculate_intervalscombine_forecastscreate_lagged_dfcreate_skeletoncreate_windowsfill_gapsreconcile_forecastsresidualsreturn_errorreturn_hypertrain_model
Dependencies:clicodetoolscolorspacecpp11data.tabledigestdplyrdtplyrfansifarverfuturefuture.applygenericsggplot2globalsgluegtableisobandlabelinglatticelifecyclelistenvlubridatemagrittrMASSMatrixmgcvmunsellnlmeparallellypillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselecttimechangeutf8vctrsviridisLitewithr
Custom Feature Lags
Rendered fromlagged_features.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-02-13
Started: 2019-09-02
Customizing Wrapper Functions
Rendered fromcustom_functions.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-02-28
Started: 2019-09-22
Direct Forecasting with Multiple Time Series
Rendered fromgrouped_forecast.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-04-19
Started: 2019-09-02
Forecast Combination
Rendered fromcombine_forecasts.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-05-19
Started: 2020-04-06
forecastML Overview
Rendered frompackage_overview.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-04-19
Started: 2019-09-03